
JOURNAL OF COMPUTATIONAL PHYSICS 90, 348-370 (1990)

Multilevel Matrix Multiplication and
Fast Solution of Integral Equations*

A. BRANDT AND A. A. LUBRECHT

Department of Applied Mathematics and Computer Science,
The Weizmann Inslitule of Science, Rehovot, 76100, Isruel

Received July 29, 1988; revised May 22, 1989

A fast multigrid approach is described for the task of calculating Jo K(x, v) u(v) dy for each
XER E W“. Discretizing .Q by an equidistant grid with n points and meshsize h, and
approximating the integrations to O(h2”) accuracy, it is shown that the complexity of this
calculation can be reduced from O(n2) to O(sn), provided the kernel K is sufficiently smooth.
For potential-type kernels, the complexity is reduced to O(sn log n). Corresponding integral
equations can be solved to a similar accuracy in basically the same amount of work, using a
special kind of distributed relaxation in a multigrid algorithm. One- and two-dimensional
numerical tests, and theoretical derivations of optimal strategies, are reported. The method is
applicable to the task of multiplying by any matrix with appropriate smoothness properties,
including most types of many body interactions. f? 1990 Academic Press. Inc.

1. INTRODUCTION

In this work we will describe an approach to reduce the complexity of multi-
integration. By multi-integration (with kernel K, over domain Q) we mean the task
of calculating the function

w(x)= j-Q K(x, Y) 4~) &, XESZCRd, (1)

given the function U. The discrete analog of this task is the multiplication of a
vector by a dense (not sparse) matrix having certain smoothness properties. Such
numerical tasks arise in many important problems in mathematics, physics, and
engineering, including: integro-differential equations, integral equations, panel
methods, boundary element methods, plasma physics, problems in elasticity,
gravitating masses, vortex schemes, coulombic molecular interactions, and other
many-body long range interactions.

* This research was sponsored by the Air Force Office of Scientific Research, United States Air Force
under Grants AFOSR-86-0126 and AFOSR-X6-0127, by the Dutch “Niels Stensen Stichting,” and by the
National Science Foundation under Grant NSF DMS-8704169.

0021-9991/90 $3.00
Copyright 0 1990 by Academic Press, Inc
All rights of reproduction in any form reserved

348

MULTILEVEL MATRIX MULTIPLICATION 349

When the domain Q is discretized by a grid with meshsize h and n = O(hpd)
points, the calculation of a single integral will ,cost O(n) operations, thus the
calculation of w(x) for each of the n gridpoints will require O(n’) operations. Since
for various problems a large number of points IZ is essential, it is our aim to reduce
the complexity of this multi-integration, in order to avoid excessive computing
times. This can be obtained by performing part of the integration on coarser grids,
in a way that keeps the added error smaller than the original line grid discretization
error, by exploiting the smoothness of the kernel K. Specifically, if the kernel K has
4s bounded derivatives, we will show that the multi-integration can be calculated
to accuracy E = O(h2”) = O(C’“‘~) in 0(sn o era ions. For a wider class of kernels,) p t
including the potential type, the number of required operations will be shown to be
O(sn log n) = O(n log(l/E)).

The basic idea of the method was outlined before in [4, Sect. 8.61 and a brief
description was given in [6]. Similar attempts to reduce the complexity of multi-
integration have been reported by Rokhlin [131, Nowak and Hackbusch [lo], and
other related approaches existed earlier (see survey in [1 I). Relevant references also
include [2, 3, 7, 91, which use hierarchical solvers for many-body simulations, and
[ll, 121, which exhibit FFT-based schemes for the solution of integral equations.
All these approaches, however, are either of limited accuracy or restricted to poten-
tial-type kernels, for which far-field expansions are used in order to obtain the
desired reduction in complexity. In the method presented below, the smoothness of
K is exploited generally and directly, by replacing some of its values by interpola-
tions from coarser grids. High-order accuracy is obtained by high-order interpola-
tions requiring no potential theory (which is indeed unavailable in various physical
systems).

The multigrid solver for integral equations described here (Section 5) introduces
several additional algorithmic innovations, such as distributed relaxation schemes
of arbitrary “order,” and ways to use multi-integrations very sparingly. In fact, the
solution, to the accuracy of the discretization error, can be obtained in an amount
of work only a fraction more than that of one multi-integration. For potential-type
kernels, a solution to accuracy E = O(h’“) = O(C~“‘~) requires O(sn(s + log n)) =
O(n log(l/s)) operations, compared to O(n(log(1/s))3) operations in [13]. (There is
usually no point in solving the discrete equations to any accuracy E substantially
below the O(h*‘) discretization error; but if one still wants to do so, the approach
presented here would require O(n(log(l/s))*) operations, while the complexity of
[13] would remain O(n(log(l/~))~). Thus, if the desired precision E is fixed-at the
machine precision, for example-both methods have O(n) complexity. An extra
log n factor appears in the complexity of the present method, and a (log n)3 factor
would similarly appear for the method of [3], if the relation between the needed
precision and the discretization error is accounted for.)

A forthcoming work, on implementing the present approach for the fast calcula-
tion of many body interactions and their steady states, is briefly described in
Section 6.2.

The range of applicability of the methods proposed in this article, and the range

5X1/90/2-6

350 BRANDTANDLUBRECHT

of problems for which the above cited efficiency is obtained, are discussed in
Section 6.3.

2. DISCRETIZATION

Let xh = x0 + ih be equidistant gridpoints in Q, where i = (ii, i,, id) is a vector
of integers and h is the meshsize. The discrete functions approximating u and w on
this grid will be denoted by r.4: = u”(x:) and W: = w”(x:).

Approximating the function u by a piecewise polynomial function tih, of degree
2s - 1, interpolated from the grid values zP(xf) = UT, coefficients K::. can be
calculated such that

w”, s, K(x, y) t;“(y) dy = hdx K;$ ui”. (2)
i

In case UT = ~(xj”) and u is sufficiently smooth, it follows from (1) and the theory
of polynomial interpolations that w(xi) = w: + O(h2” lulZs), where lulZs is an upper
bound for the 2s-order derivatives of U. The value of the coefficients Kf$, which
approximate K(x:, xi”), can often be calculated by analytical integrations (product
integration, see, for instance, Young [151); this is especially important near kernel
singularities. Just computing all the coefficients K:: would require O(sn2) opera-
tions for a general kernel K, but, as we will see below, only a few coefficients
(O(sn log n) in case of a potential-type kernel) will be needed on the finest level.

2.1. Notation

In the algorithms below, we will use a coarser grid with meshsize H = 2h. (Other
values of H/h could also be used, but are less effective and/or less convenient.) The
running index on that grid will generally be denoted by capital letters; e.g.,
uH- J- u”(x,“) is the value of the coarse grid function ~8’ at the coarse grid point
x,” = x0 + JH. The points x,” are thus, for simplicity, chosen to coincide with fine
grid points, satisfying xJ” = x’;,. A notation like K$ will stand for a discrete kernel
whose first index is in the tine grid and the second is in the coarse grid, approxi-
mating K(xf’, x,“).

We will use II”, to denote an interpolation operator from the coarse grid (H) to
the fine grid (h): If u” is a coarse-grid function, then fl”,u” is a line grid function
obtained from it by multi-polynomial interpolation of some specified order. For
example, if the chosen order is 2 then flh, is the multi-linear interpolation; i.e., linear
interpolation if d= 1, bilinear if d= 2, etc. This is the usual notation used in the
multigrid literature, the use of O”, instead of I”, serving to hint that the interpola-
tion will often be of higher (than second) order. The index on which the operator
works is denoted, when needed, by a dot. For example, 1kK:f.l denotes, for each
index i, a fine-grid function obtained by interpolating from the coarse-grid function
K:!, the latter being the function whose value at x,” is K::. The value of the inter-
polated function at the line grid point x; is denoted by [O”,K:!]j.

MULTILEVEL MATRIX MULTIPLICATION 351

h We will denote by (Ih,)= the adjoint of I,. This means that if IZ”, is written as
an n x nc matrix (where n and nc are the number of points on the line and on the
coarse grids, respectively), then (Ih,)= is the nc x n transpose of II;. Note that (Ih,)=
describes a line-to-coarse transfer (“reduction”) operator, and indeed it will be used
for that purpose. In case flh, denotes linear interpolation, for example, 2-d(Ih,)T is
the familiar “full weighting” operator, extensively used in multigrid algorithms.

Later on we will use more than two grids. It will therefore be convenient to refer
to them as levels and number them, starting with the coarsest grid that will be
called level 1, the next finer grid being level 2, etc.

3. SMOOTH KERNELS

3.1. General Description

Whenever the kernel K(x, y) is sufficiently smooth with respect to the variable y,
we can approximate K:‘J by

z:; = [Ih,K::],, (3)

where the interpolation 02 has sufficiently high order and Kt” is “injected” from
K:f; i.e., Kfy ==f K$ (f or a more general situation see Section 6.2). Hence Eq. (2)
can be approximated by

where

wf’ N +=fhd 1 x:;. ui” = hd 1 [lh,K;:]j u;
i i

= hd 1 K$ [(Oh,)’ uf-JJ = H” 1 K$,H,
J J

UHdTf2 -d(oh,)’ Uh.

(4)

(5)

Note that uH is comparable to uh; in case uh is smooth u,” N ut.
Whenever K(x, y) is also sufficiently smooth as a function of x (very often K has

the same smoothness properties in both x and y), the value of w: can be calculated
only for coarse grid points i = 21, using interpolation @, to obtain the other values
on the fine grid (very often I”, = Jh, can be used). Namely,

Wh N iI”, WH, (6)

H-
WI dTf zr- fib - Hd 1 KIr;“u,”

J
(7)

and where KY: is “injected” from K!‘:, i.e., KFy d~f K!$= K’;;,,,.

352 BRANDT AND LUBRECHT

The multi-summation (2) has thus been reduced to the analogous coarse grid
multi-summation (7). The latter problem can be coarsened in a similar way, using
a coarser grid with meshsize R= 4h. This process of coarsening is repeated until the
number of gridpoints is proportional to n ‘j2 On that grid the multi-summation is .
actually performed (requiring O(n) operations), since further coarsening would not
reduce the overall complexity (e.g., the work involved in the transfer of uh to the
coarse grid (5) is already of O(n)). Note that, for a fixed number of gridpoints n,
the number of coarser levels required to reach a grid with FZ”’ points is inversely
proportional to d, the dimension of Q.

3.2. One-Dimensional Test

In the following one-dimensional example the discretization error is O(h2)
(2s = 2), while the interpolation error of K, and therefore the coarse grid integration
error, is O(h4) (since we use fourth-order transfers). Therefore it should be possible
to carry out the integration on a coarse grid with meshsize A= 0(/z’/‘), while the
total error will be only slightly larger than the tine grid discretization error. The
overall computing time is O(n). The treatment of the integrals near the boundary
of the domain will be explained in detail in Section 4.1.

The integral is given by

where K(y - x) is defined by

K(y-x)=cos(y-x),

and u is given by

u(y) = sin’ (v).

(8)

(9)

(10)

The integration over K is carried out in such a way that the integral is exact for a
linear function (s = 1). The functions u and w are transferred using fourth-order
operators (see end of Section 4.1). K on the coarse grid is given by KY: = K:!!,,.
The coarsest grid (level 1) had (8 + 1) points, the second coarsest (16 + 1), etc.

To be able to monitor the error in the multilevel multi-integration we will
measure the error E:, defined as the average absolute error of the integrals on level
I, when the integration itself is carried out on level k (k < I),

E;= (11)

where in this section w?’ is given by w:v’= [R~w!]~. Note that Ef is the L, norm
of the discretization error on grid I. We wish to see for which k EL = Ei holds.

MULTILEVEL MATRIX MULTIPLICATION 353

TABLE I

Average Error EL in Calculating
the One-Dimensional Smooth-kernel M’ulti-integration (8)

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 k=I-6

2 8.48e-3

3 2.14e-3
4 5.35e-4
5 1.34e-4
6 3.35e-5
1 8.37e-6
8 2.09e-6
9 5.23e-I

10 - 1.3e-7
11 - 3.3e-8
12 - 8.e-9

9.94e-3

2.23e-3*

5.41e-4
1.34e-4
3.35e-5
8.37e-6
2.09e-6
5.23e-1
1.3le-7

3.70e-3

6.34e-4

1.40e-4*
3.39e-5
8.39e-6
2.09e-6
5.23e-7
1.31e-7
3.25e-8

2.33e-4
3.97e-5
8.75e-6*
2.12e-6
5.24e-7
1.3le-7
3.25e-8
8.35e-9

1.46e-5
2.48e-6
5.4le-7*
1.32e-7
3.26e-8
8.06e-9

8.28e-6
9.lOe-7
1.55e-7
3.40e-8 *
8.54e-9

5.18e-7
5.65e-8
l.tMe-8

Note. For a grid with 2’+2 + 1 points, employing a coarsest auxiliary grid with 2k+2 + 1 points

The results in Table I were obtained using fourth-order operators for both 0;
and (1:)‘. The starred results clearly show that the grid can be coarsened to
H= 0(/r”‘), whereas the total error remains very close to the discretization error
of the fine grid integral. The work involved in transferring uh to the coarse grid and
in interpolating W” to the fine grid is obviously O(n). Since the integration is
carried out on a coarse grid with a number of points proportional to n’j2, the total
work should be O(n), and this complexity was indeed obtained by the algorithm
(see the starred results in Table II).

TABLE II

CPU Time in Seconds for Table I

I k=l k=l-1 k=I-2 k=I-3 k=l-4 k=I-5 k=I-6

2 0.007
3 0.016
4 0.057
5 0.197
6 0.753
1 2.94
8 11.4
9 45.1

10 - 200.0
11 - 800.0
12 - 3200.0

0.005
0.008* 0.006
0.022 0.013
0.066 0.029’
0.211 0.079
0.785 0.241
2.95 0.848

11.6 3.17
46.0 11.8

46.5

0.021
0.045
0.108* 0.076
0.312 0.170 0.142
0.975 0.435* 0.300
3.38 1.22 0.691 0.568

12.6 3.87 1.73* 1.21
47.4 13.6 4.91 2.10

354 BRANDTANDLUBRECHT

4. SINGULAR-SMOOTH KERNELS

4.1. General Description

So far, the kernel K was assumed to be much smoother than the function u over
the entire domain of integration. In many problems of practical importance the
kernel K(x, v) is what we will call “singular-smooth”; that is, it has some singular
points and the smoothness increases rapidly with increasing distance from these
points. An example is potential-type kernels, such as K(x, y) = log Ix - yl or
K(x, y) = Ix - ~1~‘. For simplicity we will assume that, as in these examples, the
only singular points are the points x = y. (For further remarks about the kernels for
which the present methods are applicable, see Section 6.3.)

We start with the case that i = 21 and derive an exact expression relating WY = E$
and wf , replacing the approximate equation (4),

Since Kt: is an interpolation (3) of K::. itself using only coarse grid points, the
operator (Kg; - K:;.) is given by

W:: - R::;) =
0 j=2J
O(h@K’@‘(<)) otherwise, (13)

where 2p is the interpolation order and KCzp)(5) is a 2pth derivative of K at some
intermediate point 5.

Thus, whenever the 2pth difference of K is suitably small (h2P lK’2p’J < h2’ JuIzs),
the coarse grid approximation WY to wf in (12) will be an accurate one. Clearly this
is no longer uniformly true when the kernel K is singular at certain points.
However, far from the singularity ((I y - XII 9 h or II j - ill $1 for the discrete case),
the 2pth differences of K will again be small. Using this knowledge of K we can split
the correction term in (12) into two parts and write

w;=wy+hd 1 (K;;-RF;) uJ”
Ilj-ill <m

+hd 1 (K;‘1-R$)u;,
Ili - ill > m

(14)

where in one dimension llj- ill = 1 j- il. The meaning of this norm in higher dimen-
sions is more involved (it depends on the direction of interpolation) and will be
discussed below.

The remaining problem is to find a value of m for which we can neglect the last
term in (14). This means that for the case of singular-smooth kernels, the multi-

MULTILEVEL MATRIX MULTIPLICATION 35.5

integration is again performed on the coarse grid, but part of the integral, near the
singularity, is corrected. The corrected value is injected to the tine grid, so that

w)e$‘=w;+h“ 1 (K:;-Rz) u;. (15)
ll/-4Gm

If the point i is not a coarse grid point (i = 2Z+ l), we define another coarse grid
approximation Z? to the fine grid kernel K (16), similar to R defined by (3) but now
interpolating with respect to the index i,

where Kz = K!$ j. In terms of k we can write

(17)

Assuming that K(x, y) has similar smoothness properties in x and y, and that
therefore identical interpolation operators are used in (3) and (16), the equation for
the correction term here will be similar to (13):

(K;;- k:;.) = O(h2pK’2p’(<)) (Vi = 2z+ 1, Vj). (18)

Again the correction term in (17) is split into two parts, and the part for 11 j - ill > m
is neglected, defining the approximation to the tine grid integral, when i is not a
coarse grid point, by

Equations (15) and (19) define the coarse grid approximations to the line grid
integrals for all point i; first the coarse grid integrals are calculated, then these
integrals are corrected and injected to the line grid (15) and, finally, the tine grid
integrals are interpolated to the points i that are not part of the coarse grid and
corrected again (19).

An alternative way for computing (19) would be to interpolate KY: with respect
to both variables Z, J in (16): Z$= [j”,Z?FTli= [%~Oh,KFf”]i,,. This would result
in a somewhat (about one-third) smaller error in the integrals W: (i = 2Zf l), at the
expense of introducing a second correction function, instead of (18). However,
because of the additional storage needed and the more complicated calculation of
$ the actual computations were carried out as described by (19).

For convolution-type kernels, the correction terms (K::. - Z?f;) and (Kt’J - f?:;)
can of course be pre-computed in O(n) operations. Therefore this calculation does
not change the overall O(rap) complexity. However, for general type kernels, the

356 BRANDT AND LUBRECHT

application of the corrections in this manner would consume n(2p)(2m + 1) opera-
tions on the finest grid. This correction work can again be reduced to O(np) by
grouping together cp points (cp values of i) at a time and by carrying out the
corrections for all these cp points over a fixed (independent of i) interval (of length
2m + CP = O(P)), instead of the varying interval (llj- ill 6 m) used in (19). The
calculation of the contributions of UT, for each j in the fixed interval, to the coarse
grid function uH, and, through it, to wH costs O(p2) operations, but it is performed
once per cp points, hence costing only O(p) operations per point. These contribu-
tions to wH are then interpolated and subtracted from the integral at each of the
cp points, and the exact contributions xi K$$ are added instead (i being each of
the cp points, cj being a summation over the fixed interval).

The restriction operators I# = (I”,)’ used in (5) for the one-dimensional case are
given below. These operators can also be used in problems of a higher dimension,
if the grid is coarsened with respect to one dimension at a time (see Section 4.4).
The operators of order 2, 4, and 6 are respectively

I,“=#, 2, l] @a)

I;=h[-1,0,9, 16,9,0, -11 W’b)

and

I,H=&[3, 0, -25, 0, 150, 256, 150, 0, -25,0, 31. c=)

Near the boundary of the domain Sz non-central transfer operators for u and w
should be applied. The number of additional operators that should be programmed
is directly proportional to the order 2p of the transfer operator. One can aooid this
additional programming and use the central transfer operators also near the bound-
ary, by smoothly extending K(x, y) outside Q (usually K(x, JJ) is well defined there
in the first place), while defining on the finest grid u(JJ) = 0 for y $0. In practice this
means adding external points near the boundary of each coarser grid, for which
non-vanishing values of z.P, as well as needed-for-interpolation values of w”, are
calculated. The number of such external points is at most 2p - 2 in each direction
on each line of interpolation.

4.2. Minimum Work

Taking the one-dimensional kernel K = In Ix - yl as an example, we will now
derive the optimal values of the order 2p of the transfer operators (we will only
consider even orders) and of the radius m of the fine grid correction region, so as
to minimize the computational work, under the constraint that the added error, due
to the use of coarser grids, should be smaller than the original fine-grid discretiza-
tion error. The interpolation error, resulting from the use of the interpolated kernel
R or R instead of the full kernel K is given by (13), (18). However, since part of
this error is corrected (15), (19), the first uncorrected error term in w will occur at

MULTILEVEL MATRIX MULTIPLICATION 357

a distance (m + 1) h from the singularity. The error resulting from the use of &j,
instead of Ki,,i, at that point (j= i+ (m + 1)) is

X(2p-l)x(2p-3)x ... x(1)x(-1)x ... x(3-2p)x(l-2p)
(2P)!

(21)

(see, for instance, [S, p. 279]), where a calculation for the logarithmical kernel
shows that, provided m 22.5~ (so that no interpolation point is too close to the
singularity at i), one can approximately take 5 at x, = xi + (m + 1) h and hence

$ K(x,, 5) z (2p- ‘)!
(m + l)*” h2p’ (22)

The error in w resulting from all uncorrected points, at distances (m + 1) h,
(m + 2) h, both left and right of the singularity, can similarly be calculated, and,
when added together, yield approximately

3,16{1x3x5x ... x(2p-l)}‘_ 0.7p 2p
2p(m + 1)‘” (-1 m+l ’ (23)

Notice that this interpolation error is independent of the meshsize, hence the same
error will approximately be introduced also at each interpolation in each of the
subsequent coarsening steps.

The discretization error, the error of approximating (1) by (2), is 0(h2su(2s)(<)),
where 2s is the approximation order. We will assume u to be smooth on the scale
of the entire domain; so that h2ru(2.v) z n 2v, where n is the number of gridpoints on
the domain. (More generally, this relation can be used to define the “effective” n,
so that n is roughly the number of meshsizes in the length scale on which u is
smooth.) The condition that the coarse grid integration error (23) should be
smaller than the fine grid discretization error is therefore

m = 0.7pdP - 1. (24)

As a second equation we calculate the amount of work per fine grid point as a
function of 2p and m. Taking an “operation” to mean a combination of one multi-
plication and one addition, the number of operations in transferring the function uh
to the coarse grid is p per fine grid point (since for half of the values of uh the trans-
fer is trivial). Similarly, p is also the number of operations per fine gridpoint in
interpolating wH to the fine grid. The number of operations per point in correcting
the coarse grid integral on the fine grid is 2m + 1. This gives (2m + 1 + 2p) as the
total fine grid work per fine grid point, and similar figures also hold in higher
dimensions (as we will see below). For a d-dimensional problem (or in higher

3.58 BRANDT AND LUBRECHT

dimensions, when coarsening with respect to d dimensions at a time), since the
coarse grid has approximately 2-d the number of the fine grid points, the number
of coarse grid operations is proportional to 2 Pd(2m + 1 + 2~); and so on for still
coarser grids. The work of the actual integration on the coarsest grid can be
neglected, assuming this grid has less than n”* points. Adding all the work on all
the levels we obtain the total work per line grid point,

WE (l-2-7’ (2m+ 1 +2p). (25)

Substituting m from (24) into (25) and then minimizing W by setting C? W/ap= 0
gives the equation cr(ln o! - 1) = 1.43, where tl= &‘. It follows that a = 3.9 and
hence

2p = 1.4s In n, (264

and by (24),

m = 1.4(2p) - 1 = 2s In n - 1. Wb)

Hence, by (25), for d= 1,

In Table III we, for example, take s = 1 (piecewise linear integration rule) and
compute the optimal values of 2p (by (26), rounded to an integer) and the corre-
sponding m and W (derived from (24) and (25), respectively) as functions of the
level 1. Furthermore, we show the optimal value of m (24), and the corresponding
work W (25), when restricting the order of transfers to 2p = 6. In this way we can
see how the work with a restricted order of transfer is related to the minimal work.

TABLE III

Optimal Values for m and 2p and
Corresponding W for d = 1, s = 1

1 n 2P

3 33 6
4 65 6
5 129 8
6 251 8
I 513 10
8 1025 10
9 2049 10

10 4097 12
11 8193 12
12 16385 12

m W

6 38
8 46
9 54

11 62
11 66
13 74
15 82
16 90
18 98
20 106

2p m W

6 6 38
6 8 46
6 11 58
6 145 70
6 17 82
6 22 102
6 28 126
6 36 158
6 45 194
6 57 242

MULTILEVEL MATRIX MULTIPLICATION 359

Note that the work per point for the “classical” integration is given by W= n.
The main conclusion to be drawn from this table is that, even with unrestricted
transfer orders, the optimal order of transfer is reasonable, while when restraining
the order of transfer to 6, the amount of work increases only by a factor of 2 (for
n N 10,000). Thus, transfers of impractically high orders are not required to obtain
computing times close to the theoretically best. For problems in higher dimensions
the situation will be even more favourable. as we will see in Section 4.4.

4.3. One-Dimensional Test

As an example of a multi-integral with a non-periodic, singular-smooth kernel,
we tested the one-dimensional case discussed above,

w(x)=jI In Ix-y1 (1 -y’)dy, (27)
I

with piecewise linear (second-order accurate: s = 1) discretization. Equations (15)
and (19) were used for the fast integration with m = 3 + 2 Inn (found to give
reasonable results at moderate values of n). In Tables IV and V average errors (11)
are given, using fourth- and sixth-order transfers, respectively, where now w:’ are
the values obtained for W: on the finest grid through the corrections (15) and (19),
assuming similar corrections have also been used for obtaining WY, and so on
recursively to level k, for which the values of w are calculated by direct summation.
The coarsest grid (I = 1) has 8 + 1 points including the boundaries, the second
coarsest 16 + 1, etc. (see also Table III). Additional points were used on coarse
grids to cope with the necessity of a larger domain, as outlined in Section 4.1.

When one allows the additional error introduced by the coarse grid integration

TABLE IV

Average Error Ei in Calculating the
One-Dimensional Logarithmic-Kernel Multi-integration (27),

Using Fourth-Order Transfers

1 k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5

8.332e-3
2.094e-3
5245e-4
1.312e-4
3.282e-5
8.207e-6
2.052e-6
5.13Oc-7

8.332e-3

2.14Oe-3
5.477e-4
1.403e-4
3.61Oc-5
9.894e-6
2.654e-6

2.14le-3
5.667e-4
1.536e-4
4.202e-5
1.317e-5
3.846e-6
l.l77e-6

5.662e-4
1.62Oe-4
5.026e-5
1.909e-5
6.148e-6
2.051e-6

1.62Oe-4
5.45le-5
2.780e-5
l.O29e-5

5.45le-5
3.214e-5

Note. For a grid with 2’+2 + 1 points, employing a coarsest auxiliary grid with
2k + * + 1 points.

360 BRANDT AND LUBRECHT

TABLE V

Same as Table IV but Using
Sixth-Order Transfers

1 k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 k=l-6

2 8.332e-3
3 2.094e-3
4 5.245e-4
5 1.312e-4
6 3.282e-5
I 8.207e-6
8 2.052e-6
9 5.130e-7

10 - 1.2e-7
11 - 3.0e-8

8.332e-3
2.078e-3
5.222e-4
1.307e-4
3.269e-5
8.141e-6
2.034e-6

2.054e-3
5.170e-4
1.297e-4
3.244e-5
8.012e-6
1.998e-6
4.968e-7

5.154e-4
1.278e-4
3.194e-5
7.756e-6
1.926e-6
4.754e-7
l.O95e-7

1.278e-4
3.12Oe-5
7.327e-6
1.786e-6
4.331e-7
8.809e-8
1.966e-8

3.12Oe-5
1.3 15e-6
1.637e-6
3.599e-7
4.712e-8
7.668e-9

1.3 15e-6
1.735e-6
3.015e-7
4.793e-8
2.135e-8

to be as large as the discretization error on the finest grid, the fourth-order transfers
(20b) give good results for 21-k < 10. The sixth-order scheme (20~) gives satisfac-
tory results for 21- k < 17, while the amount of additional computing time needed
by the sixth-order transfers is small compared to the overall computing time
(generally 20 %).

To see whether the fast multi-integration efliciency depends on the smooth
character of u(y) in (27) the same calculations were carried out with a more
oscillatory function U. It turns out that, since the discretization error of the fine grid
integration is larger, the coarse grid integration becomes relatively more accurate;
in other words, the effective n (see Section 4.2) is smaller. Thus, the fast integration
of a more oscillatory function is an easier task.

In Table VI the computing time for Table V, in seconds on an IBM 3081, is

TABLE VI

CPU Time in Seconds for Table V

1 k=l k=l-1 k=l-2 k=I-3 k=I-4 k=I-5 k=I-6

2 0.006
3 0.015
4 0.057
5 0.199
6 0.766
7 2.95
8 11.8
9 - 45.0

10 - 180.0
11 - 720.0

0.014
0.023 0.036
0.057 0.059
0.124 0.124
0.349 0.260
1.02 0.612
3.53 1.60

4.14

0.064
0.128 0.133
0.257 0.260 0.269
0.514 0.526 0.537 0.534
1.18 1.11 1.11 1.12
2.81 2.45 2.36 2.37
7.14 5.23 4.80 4.75

12.4 10.6 10.1

MULTILEVEL MATRIX MULTIPLICATION 361

given. Since the important information is the relative reduction in computing
time, the results should be approximately machine independent. The multilevel
multi-integration gives a significant reduction in’computing time over the “classical”
one-level integration (k = I), from level 6 (257 points) onwards, so the approach is
only worthwhile for multi-integration over many points. Using second-order
transfers, the multilevel multi-integration gives a significant gain in computing time
from level 4 (65 points) onwards. When comparing the gain in computing time with
the predictions from Table III, it can be seen that the gain lies somewhere between
the two predicted gains (with unrestricted p and with 2p restricted to 6), since
the number of points rn to be corrected on the line grid, which is taken as
m = 3 + 2 In n, does not grow as fast as in the seventh column of Table III. This
results, of course, in somewhat less accurate integrals, but in the tested cases the
error was still smaller than the truncation error.

All reported results were obtained from programs written in PASCAL. Since the
compiler used was not very efficient, a FORTRAN code was written, for which a
very efficient compiler was available, to check if the obtained reductions in
computing time were compiler dependent. Whereas the FORTRAN code was
much faster (CPU times were nearly one-tenth of the PASCAL computing time),
the relative reductions obtained by the multilevel integration were very similar
(differences were less than 10%). Also the PASCAL code was run on a different
machine (VAX 1 l/750) giving similar results. Thus it can be safely concluded that
the reported reductions in computing time can be generally obtained.

4.4. Two-Dimensional Test

The above algorithm can easily be extended to two dimensions by coarsening
alternately in the x dimension and the y dimension. In this way, the transfer of the
kernel K and the function u and the interpolation and correction of w are essentially
the same as for the one-dimensional case (Section 4.1). This approach, which may
seem cumbersome at first glance, proved to be very effective and simple to
generalize to even higher dimensions. Its slight disadvantage is the additional
(50%) storage required for the “half-coarsened” grids. Its main strength is its
simplicity and the way it decouples both variables. Furthermore, it ensures that the
total work will continue to be proportional to O(n log n), since all the components
of the algorithm are at most of this complexity.

As a test problem, the multi-integration chosen was:

4x, Y) = 5, K(x, y, x’, y’) 24(x’, y’) dx’ dy’, (4 Y 1 E Q, (28)

where

4x’, Y’) =
(1 - xQ - y’2)1/2 b’,Y’)EQ
o elsewhere,

362 BRANDT AND LUBRECHT

and Q is the disc x2 + y* 6 1. The line grid integration is second-order accurate
(s = 1).

As stated in Section 4.1, the number of points on each grid is extended according
to the order of transfer, resulting in a straightforward integration near the
boundary. In two dimensions the cost of this additional storage is considerable,
except for very line grids-which is our aim anyway, since the multilevel approach
pays only when using a large number of points.

In the next six tables (Tables VII-XII) results are reported for tests in which the
corrections (15), (19) to the coarse grid integrals were carried out over rectangles
of (2~2, + 1) x (2m, + 1) points around the singularity: in the direction of inter-
polation the number of correction points was m, = 3 + 0.5 Inn, while in the
perpendicular direction the number of points was m2 = 2. The error norm (11) is
adjusted with respect to these corrections (15), (19) as explained in Section 4.3. The
coarsest grid (level 1) consisted of (4 + l)* points, level 2 of (8 + l)* points, and
level 3 of (16 + 1)’ points, etc.

As can be seen from these tables, for any given n, the order of transfer necessary
to obtain a nearly optimal reduction in computing time is much lower than for the
one-dimensional case (compare Tables IV and VIII); otherwise the same conclu-
sions are valid. Mainly because of the additional points needed near the boundary
on every grid, the computing time on the coarse grids increases significantly when
high-order transfers are used (compare, for instance, I= 2, k = 1 in Tables X, XI,
and XII). However, these high-order schemes should be used for large problems
only, where the additional computing time due to the extra points becomes small
(approximately 15 % for level 7 calculations with sixth-order transfers). On level 7,
when sixth-order transfers are used, the computing time is reduced by a factor of
300, while the additional error caused by the coarse grid integration is still
negligible.

TABLE VII

Average Error EL in Calculating
the Two-Dimensional Singular-Smooth Multi-Integration (28),

Using Second-Order Transfers

I k=l k=l-1 k=I-2 k=l-3 k=l-4 k=I-5

2 2.312e-1 2.6OOe-1 -
3 7.685e-2 9.566e-2 1.275e-1
4 1.518e-2 1.5 13e-2 3.374e-2 6.535e-2
5 - 4e-3 3.501e-3 l.O23e-2 3.568e-2

Note. For a grid with (2’+ ’ + 1) x (2’+ ’ + 1) points, employing a coarsest grid of
(2 ‘+‘+1)~(2~+‘+l)points.

MULTILEVEL MATRIX MULTIPLICATION 363

TABLE VIII

Same as Table VII, but
Using Fourth-Order Transfers

1 k=l k=l-1 k=I-2 k=l-3 k=i-4 k=I-5

2 2.312e-1 2.32le-1
3 7.685e-2 7.805e-2 1.942e-2
4 1.518e-2 1.584e-2 1.663e-2 1.854e-2
5 - 4e-3 5.160e-3 5.833e-3 6.659e-3 9.247e-3
6 - le-3 1.8OOe-3 2.316e-3 3.46le-3
I - 3e-4 8.61 le-4 1.269e-3

TABLE IX

Same as Table VII, but
Using Sixth-Order Transfers

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=l-5

2 2.312e-1 2.315e-1
3 7.685e-2 7.636e-2 7.594e-2
4 1.518e-2 1.502e-2 1.491e-2 1.524c-2
5 - 4e-3 4.616e-3 4.463e-3 4.36Oe-3 4.686e-3
6 - le-3 1.313e-3 l.O16e-3 9.525e-4 1.627e-3
7 - 3e-4 3.953e-4 3.317e-4 3.769e-4

TABLE X

CPU Time in Seconds for Table VII

I k=l k=l-1 k=I-2 k=l-3 k=I-4 k=I-5

2 0.113 0.085
3 1.35 0.466 0.485
4 19.4 3.04 2.15 2.13
5 - 310.0 27.6 11.4 10.4

TABLE XI

CPU Time in Seconds for Table VIII

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5

2 0.113 0.155 -
3 1.35 0.703 0.651
4 19.4 4.15 2.79 2.78
5 - 310.0 32.5 12.7 11.2 11.2
6 - 5,000.0 70.0 51.2 50.0
7 - 80,OOO.O 235.0 218.0

364 BRANDT AND LUBRECHT

TABLE XII

CPU Time in Seconds for Table IX

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5

2 0.113 1.01
3 1.35 2.56 2.21
4 19.4 9.86 6.34 5.99
5 - 310.0 56.1 21.2 17.5 17.3
6 - 5,000.0 102.0 61.2 63.7 63.4
7 - 80,OOO.O 278.0 252.0 248.0

5. SOLUTION OF INTEGRAL EQUATIONS

5.1. Straightforward Multigridding: A Preliminary Test

The fast integration, outlined in the previous sections, can of course be used
straightforwardly in the solution of integral equations, e.g., by employing it in the
relaxation process and residual calculations of the usual FMG (full multigrid)
algorithm (described in many articles; see, e.g., [4, Sect. 1.61): The relaxation
should usually be of the simultaneous displacement type (such as Jacobi or
Richardson relaxation), so that all the integrations needed in one relaxation sweep
can be performed by one multi-integration.

However, in case successive displacement (e.g., Gauss-Seidel) schemes have much
better smoothing properties, they can be approximately implemented in a defect-
correction manner. That is, instead of relaxing the system of equations Lu = f
(where L is a discretized integral operator, e.g., Lui = hd c, K,,iui), one can relax
L’u =f’, where L’ is a local approximation to L (e.g., L’ui = hd xjE NCij Kj,juj, where
N(i) is some neighborhood of i) and f’ =f+ L’u - Lu. This f’ can be calculated
simultaneously at all points once per sweep, hence requiring only one multi-integra-
tion per sweep for evaluating Lu. In fact, f' may be evaluated only once per several
sweeps; this is a good idea even for Jacobi-type relaxation, since the major cost is
that of the multi-integration (see Section 5.2). An alternative to defect corrections
is to update the integrals in some neighborhood of each relaxed point. (This alter-
native must be taken when the distributed relaxation described below is used, since
some of the changes entering L’u are of lower distribution order than those
entering Lu.)

It is important to ensure that relaxation is effectively local; i.e., that relaxing at
a point xi introduces only small changes to the discrete integral hd Ck Kjkuk FZ
f K(xj, y) u(y) dy at points xj far from x,; otherwise each such integral would
accumulate too many significant changes in a relaxation sweep. This can be
achieved using a suitable kind of distributed relaxation. For example, instead of
updating one unknown at a time (ui t ui + S,), say, three values are simultaneously

MULTILEVEL MATRIX MULTIPLICATION 365

changed: u,_, t ui- i - 6;, ui t ui+ 26,, and ui+, t u,, , - 6,, where 6, is chosen
such that after these changes the equation at xi is satisfied. This is called a second-
order distributed relaxation. More generally, a distributed relaxation of order Y is
a relaxation where each set of simultaneous changes is an r-order difference of a
local function (e.g., a multiple of a discrete delta function). Such a relaxation
usually ensures that the changes in the integrals are essentially local: the influence
of an r-order distributed relaxation at xi on the integral at xi behaves like
CK(x,, x,)/ax’, which decays like Jxi - xi I- r or jxi - xj 1 m-r - ’ in potential-type
kernels. Such distributed relaxation schemes (special cases of the general schemes
discussed in [S, Sect. 3.51) can be used either as simultaneous displacement
schemes (new values replacing old ones at the end of a sweep), in which case they
are called distributive Jacobi; or in successive displacements (the changed values
being immediately used in relaxing subsequent equations), in which case they are
called distributiue Gauss-Seidel. Near boundaries lower-order distributions can be
used.

As a test problem we have solved the equation

Wx) - i’ W, Y) u(y) & =f(xh
J -1

(29)

where K= In Ix - yl and f is chosen so that the solution is V(y) = 1 - y2. The
discretization is second-order accurate (2s = 2). For I = 0, for example, the
smoothing factor of the second-order distributive Jacobi and distributive Gauss-
Seidel schemes are ,ii = 0.415 and p = 0.238, respectively. Using an underrelaxation
factor of 0.6, distributive Jacobi is effective in the entire range of I: ji lies between
p = 0.302 and fi = 0.400 (the values for 1b = 0 and i = co, respectively).

As a preliminary experiment we have treated the case of I = 3 and used the
second-order distributive Jacobi relaxation (by no means the best scheme for this
case) in V(1, 1) cycles. At the two boundary points a first-order distribution has
been employed. Tables XIII and XIV show results obtained with second-, fourth-,
and sixth-order transfers (2~ = 2,4,6, resp. (20a)-(20c)) and m = 3 + 2 in n. In
Table XIII the L, norm of uk - U is given, where uk is obtained using k coarser
grids in the multi-integration and two I’(1, 1) cycles per each level of the FMG
algorithm. In the first column (labeled 37/(1, l)), the discretization error is
approximated using one additional V(1, 1) cycle, to eliminate the algebraic error.
From this table it can be concluded that two V(1, 1) cycles solve the problem to
the level of truncation errors. Whenever the error in the multi-integration was of
the same order as the discretization error, the transfer order 2p was raised by 2.

The computing time is given in Table XIV. An O(n log n) complexity is quite
clearly shown. The actual running time could be substantially reduced by using a
better relaxation scheme (hence less relaxation sweeps per cycle and/or less cycles),
or, even further (by a factor close to 12) by the techniques we discuss next
(Section 5.2).

366 BRANDT AND LUBRECHT

TABLE XIII

L, Norm of uk - U

1 2P 3UL 1) k=O k=l k=2 k=3 k=4 k=5 k=6

2 2 1.76e-3 2.11e-3 1.98e-3 - - - -
3 2 437e-4 5.61e-4 367e-4 4.48e-4 - -
4 2 l.O8e-4 1.37e-4 2.21e-4 4.77e-4 5.08e-4 -
4 4 l.O8e-4 1.37e-4 l&e-4 1.43e-4 1.41e-4 -
5 4 2.65e-5 3.45e-5 3.62e-5 3.88e-5 4.1Oe5 4.08e-5 -
6 4 6.45e-6 8.99e-6 9.6Oe-6 l.O7e-5 1.23e-5 1.35e-5 1.35e-5 -
7 4 1.56e-6 2.38e-6 3.12e-6 3.69e-6 4.69e-6 6.22e-6 7.67e-6 7.67e-6
7 6 1.56e-6 2.38e-6 2.37e-6 2.35e-6 2.32e-6 2.28e-6 2.26e-6 2.26e-6
8 6 4.67e-7 5.95e-7 5.92e-7 5.87e-7 5.76e-7 5.59e-7 5.38e-7 5.36e-7
9 6 - 1.2e-7 - 1.5e-7 1.47e-7 1.46e-7 1.43e-7 1.36e-7 1.27e-7 l.l8e-7

10 6 - 3.Oe-8 - 4.Oe-8 3.38e-8 3.07e-8 2.54e-8 2.2Oe-8

Note. I/ is the solution of the integral equation (29) and uk is the approximate solution
obtained using k coarser grids in each of the multi-integrations and 2V(l, 1) cycles at each level
of the FMG algorithm.

5.2. Advanced Multigridding

The work of the integral solver can be drastically reduced by having it resort to
full-order multi-integration as seldom as possible. In fact, only one such multi-
integration on the finest grid, plus some much less expensive ones (on coarser grids
and/or using lower accuracy) is all that is needed.

The proposed procedure for obtaining a solution to 0(/r*“) accuracy on the finest
grid is an FMG algorithm as follows. First the equations are solved to a similar
accuracy on a coarser grid, say with meshsize yh. (This is done by a similar
procedure-so the algorithm is defined recursively.) The grid+ solution is then
interpolated to grid h to serve there as the first approximation. The order of this

TABLE XIV

CPU Time in Seconds for Table XIII

I 2P k=O k=l k=2 k=3 k=4 k=5 k=6

2 2 0.64
3 2 1.06
4 2 1.85
4 4 2.44
5 4 4.62
6 4 11.8
7 4 38.0
7 6 39.9
8 6 140.0
9 6 - 500.0

10 6 - 2000.0

0.63 -
1.04 1.08
1.77 1.73
2.63 2.45
4.06 4.10
7.85 7.30

18.0 13.9
20.3 16.6
54.1 34.7

169.0 83.8

1.77
2.34
4.05
7.25

13.4
16.0
31.1
65.9

140.0

-
4.11 - -
7.38 7.35 -

13.4 13.5 13.5
16.0 15.9 16.1
30.8 30.8 31.0
62.8 63.1 63.5

123.0 122.0 120.0

MULTILEVEL MATRIX MULTIPLICATION 361

interpolation should be 2s or a little higher (if we want to have U(h*“) accuracy also
in derivatives of the solution; see [S, Sect. 7.1 I).

The first approximation thus obtained, denoted u’, is now used for an 0(/z*‘)
calculation of the integrals by the multi-integration. In our example (29), this
multi-integration should cost about Wn = 1 lsn In n operations (see (26~)). From
this point on no such full multi-integration is needed. Instead, whenever needed
(e.g., after each relaxation sweep or coarse-grid correction), a multi-integration is
done on the solution increment, i.e., the difference between the current solution and
UO, and the integrals thus calculated are added to those of ~4’. The incremental
multi-integration can be of lower order: since the increment is only about y” times
the truncation errors, the multi-integration can employ p and m which are
O(s log y), instead of O(s log n), hence requiring O(sn log y) operations only. Since
the required number of multigrid cycles (each employing a couple of relaxation
sweeps followed by a coarse-grid correction) is O(s log y), the total number of
operations in all the fine-grid incremental multi-integrations is O(s* n(log y)‘).

Each calculation of a coarse-grid correction should itself employ multi-
integrations on coarser grids, but the needed accuracy of those is even lower: 10%
accuracy should be enough, since it is a crude correction function which is being
calculated. Hence p and m which are O(1) can be used in these multi-integrations,
and their cost is O(n) operations per cycle, hence O(sn log y) in all the cycles.

In summary, the entire FMG solution process requires only one full multi-
integration on the finest grid, plus a similar one on each of the coarser grids (for
the recursion needed to obtain the first approximation); the rest of the work is
O(s*n(log y)‘). Hence the total number of operations to solve a d-dimensional integral
equation to accuracy O(h*“) is

(nW+n W+? W+ ... +O(szn(logy)2)
f Y2d)

<(l-y-d)-’ Wn+O(s%(logy)2), (30)

where Wn is the work of one fine-grid O(h’“) multi-integration. Thus, in principle,
for large enough n the total work is as close as one wishes to Wn, the work of just
one multi-integration (taking, e.g., y = log n). In case of (29), for example,
Wz 11s log n (see (26c)), hence the total number of operations should be about
12sn log n + O(s*n) (taking, e.g., y = 12; for moderate n, y = 2 is, of course,
preferable, and the operation count is then 22sn log n + O(s*n)).

Preliminary tests of the approaches described in this section have been done with
the two-dimensional problem of Section 4.4, confirming the expected gains.

6. CONCLUSION

6.1. Summary of Results

The computing time for multi-integrals with sufficiently smooth kernels has been
reduced from O(n*) to O(n) using multilevel multi-integration. More important, the

368 BRANDT AND LUBRECHT

calculation time for the basic potential-type kernels was reduced from 0(n2) to
O(n log n). The gain, however, is significant only when working with sufficiently
many points (several dozens). This fast multi-integration can be applied
straightforwardly to the fast multigrid solution of integral equations.

For a one-dimensional multi-integration with a simple potential-type kernel, the
theoretical number of required operations per gridpoint is roughly W= 11s In IE,
where 2s is the accuracy order of the discretization. If the order of the inter-grid
transfers is restricted to 6, for n ‘v 10,000, this computing time is just doubled. The
solution time for corresponding integral equations should be about W+ 0(&z).

Using grids coarsened with respect to one variable at a time, such results can
readily be extended to higher dimensions. This convenient approach uses
approximately four times as much storage as the one-level integration, partly
because of the storage of the correction terms (13), (18) and partly because of the
storage of the “half-coarsened” grids. The required order of transfers, relative to the
total number of points n, is much lower in problems of higher dimension.

Because the method employs simple equidistant grids, with a coarse to fine mesh
ratio of 2, the algorithm is easily programmed, especially by anyone familiar with
multigrid programming.

6.2. Nonuniform Grids and Many-Body Interactions

In several problems of interest, it is inconvenient or impossible to choose the
finest grid to be equidistant; e.g., in problems with interacting particles, the line grid
points coincide with the position of the particles. In this case multilevel multi-
integration can still be used to speed up the calculation, but the next coarser grid
will be constructed as a semi-uniform grid (a uniform grid subdivided wherever the
particle density is higher), and as a consequence the coarse grid will no longer be
a subset of the line grid. The transfer of the function K from the finest grid to the
next coarser grid should then be performed by a high-order interpolation, instead
of by simple injection. In fact, however, in particle-type problems the kernel K is
usually given by a closed-form formula (e.g., K(x, y) = Ix - yl -‘) through which it
can directly be calculated on every grid, and hence need not be transferred from the
finest grid. An effective code of this kind for general many-body interactions has
been developed in collaboration with Y. Accad and will be separately reported.

For integral equations, nonuniform grids may result from the need to employ
local refinements in those parts of the domain where the solution is less smooth.
Multigrid techniques similar to those employed for differential equations (see [4,
Sect. 9; or 5, Sect. 93) can then be used.

6.3. Other Extensions and Limitations

The method described above in terms of multi-integrations is actually applicable
to a wide class of tasks of multiplying a vector by an n x m matrix K= [K,], when
the result is desired to some accuracy E > 0. Thus, most of the work of multiplying
by K can be replaced by multiplying with the smaller n x m’ matrix K’, if the

MULTILEVEL MATRIX MULTIPLICATION 369

following holds. For each 1 <j < m there exists a subset Nj (the “coarse neigh-
borhood” of the unknown j) and coefficients ajj. (the “coarse-to-line interpolation”
coefficients) such that, for any i,

cl
Kg- c cl,i.& 6 E. (31)

j$M, j'sN,

Here Mi is a small subset of columns (the “fine neighborhood” of equation i), for
which the multiplication of the vector by the ith row should still be done in terms
of the original matrix K. This replacement of K by K' pays, of course, whenever the
size of each Nj and Mi is small compared with m and provided m’ is substantially
smaller than m.

Not in all such cases, can the full efficiency, exhibited by our examples above, be
attained. To obtain that type of efficiency we have basically assumed that
K, = K(xi, xj), where xi E Rd and where, for any meshsize h we use (including that
of the coarser grids) and any partial derivative 3, the size of hP8'K(x, y) decreases
exponentially in p, except perhaps in some singular neighborhoods whose relative
total volume is O(hp).

In some important cases this assumption will be satisfied for the finest grid used
in practice, but not for considerably coarser grids needed in the algorithms of
Sections 4 and 5. This typically happens for oscillatory kernels, such as Bessel or
Hankel functions of Ix - yl, occurring, for example, in boundary element discretiza-
tion of highly indefinite problems, where the finest grid is just fine enough to resolve
the oscillations.

Often in this situation the full efficiency may still be obtained by writing the
unknown function u in the form u = Cf=, uI(pI, where qr are some fixed oscillatory
functions, and the u, are unknown functions which are transformed in a smoother
way by the integral operator. The multi-integrations and the multigrid solvers
should then be described in terms of those functions uI. Often, the number L of
such functions should increase on coarser grids, proportionally to their meshsize.
(For a similar device in the multigrid treatment of highly indefinite PDEs, see
briefly in Section 4.2.2 of either [4 or 51, and in much more detail in [14].)

REFERENCES

1. J. AMBROSIANO, L. GREENGARD, AND V. ROKHLIN, Yale University Research Report YALEU/DCS/
RR-565, September 1987 (unpublished).

2. A. W. APPEL, SIAM J. Sci. Stat. Comput. 6, 85 (1985).
3. J. BARNES AND P. HUT, Nature 324, 446 (1986).
4. A. BRANDT, in Multigrid Methods, Proceedings, KSln-Porz, 1981, edited by W. Hackbusch and

U. Trottenberg (Lecture Notes in Math., Vol. 960, Springer-Verlag. New York/Berlin, 1982), p. 220.
Incorporated later into [S].

5. A. BRANDT, Multigrid Techniques: 1984 Guide, with Appications to Fluid Dynamics, monograph.
(Available as GMD Studien Nr. 85, from GMD-AIW, postfach 1240, D-5205, St. Augustin 1, West
Germany.)

370 BRANDT AND LUBRECHT

6. A. BRANDT, in Proceedings, Third Copper Mountain Conference on Multigrid Methods, Copper
Mountain, Colorado, April 1987, edited by S. McCormick (Dekker, New York, 1988), p. 35.

I. J. CARRIER, L. GREENGARD, AND V. ROKHLIN, SIAM J. Sci. Star. Compui. 9, 669 (1988).
8. G. DAHLQUIST AND A. BJ~RCK, Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1974).
9. L. GREENGARD AND V. ROKHLIN, J. Comput. Phys. 73, 325 (1987).

10. Z. P. NOWAK AND W. HACKBUSCH, “On the Complexity of the Panel Method,” International
Conference on Modern Problems in Numerical Analysis, Moscow, September 1986.

11. L. REICHEL, J. Comput. Math. 14, 125 (1986).
12. L. REICHEL, Report ICM-9, Institute for Constructive Mathematics, University of South Florida,

Tampa, FL, 1986 (unpublished).
13. V. ROKHLIN, J. Comput. Phys. 60, 187 (1985).
14. S. TA’ASAN, Ph. D. thesis, The Weizmann Institute of Science, Rehovot, Israel, 1984 (unpublished).
15. A. YOUNG, Proc. Roy. Sot. London A 224, 552 (1954).

